A finite volume local defect correction method for solving the transport equation

نویسندگان

  • W. Kramer
  • H. J. H. Clercx
  • R. M. M. Mattheij
چکیده

The local defect correction (LDC) method is applied in combination with standard finite volume discretizations to solve the advection-diffusion equation for a passive tracer. The solution is computed on a composite grid, i.e. a union of a global coarse grid and local fine grids. For the test a dipole colliding with a no-slip wall is used to provide an actively changing velocity field. The LDC method is tested for the problem of localized patch of tracer material that is transported by the provided velocity field. The LDC algorithm can be formulated to conserve the total amount of tracer material. However, if the local fine grids are moved to adaptively follow the behaviour of the solution, a loss or gain in the total amount of tracer material is produced. This deficit in tracer material is created when the solution is interpolated to obtain data for the moved fine grid. The data obtained by the interpolation scheme in the new refined region can be adapted in such a way that the deficit is spread over the new grid points and conservation of tracer material is satisfied. Finally, the results of the conservative finite volume LDC method are compared and validated with results from a spectral method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An improved collocation method based on deviation of the error for solving BBMB equation

In this paper, we improve b-spline collocation method for Benjamin-Bona-Mahony-Burgers (BBMB) by using defect correction principle. The exact finite difference scheme is used to find defect and the defect correction principle is used to improve collocation method. The method is tested on somemodel problems and the numerical results have been obtained and compared.

متن کامل

A Defect-Correction Method for Time-Dependent Viscoelastic Fluid Flow Based on SUPG Formulation

A defect-correction mixed finite element method for solving the time-dependent JohnsonSegalman viscoelastic equations in two dimensions is given. In the defect step, the constitutive equation is computed with the artificially reduced Weissenberg parameter for stability, and the resulting residual is corrected in the correction step on the same grid. A streamline upwind PetrovGalerkin SUPG appro...

متن کامل

Electrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory

Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...

متن کامل

Numerical Simulation of the Hydrodynamics of a Two-Dimensional Gas—Solid Fluidized Bed by New Finite Volume Based Finite Element Method

n this work, computational fluid dynamics of the flow behavior in a cold flow of fluidized bed is studied. An improved finite volume based finite element method has been introduced to solve the two-phase gas/solid flow hydrodynamic equations. This method uses a collocated grid, where all variables are located at the nodal points. The fluid dynamic model for gas/solid two-phase flow is based on ...

متن کامل

Modeling of pollutant transmission in rivers By using Finite volume method and ANFIS model

Study in surface water quality is important. Rivers are one of the main sources of water supply fordrinking, agriculture and industry. Unfortunately, sometime Rivers where wastewater dischargesare considered. For this reason,the pollutant transmission in river is one of the most importantproblems in Environmental Engineering. the Advection Dispersion Equation (ADE) is governedon the pollutant t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006